Пояснительная записка

Настоящая программа составлена на основе «Примерной программы среднего (полного) общего образования по информатике и информационным технологиям. Базовый уровень» (утверждена приказом Минобразования России от 09.03.04. № 1312) и авторской программы И.Г. Семакина, Е.К. Хеннера. Данный курс является общеобразовательным курсом базового уровня и рассчитан на изучение учащимися 10-11 классов в течении 68 часов (в том числе в X классе - 34 учебных часа из расчета 1 час в неделю и в XI классе - 34 учебных часа из расчета 1 час в неделю). Программа соответствует федеральному компоненту государственного стандарта среднего (полного) общего образования по информатике и ИКТ (базовый уровень).

Общая характеристика учебного предмета

Приоритетными объектами изучения информатики в старшей школе являются информационные системы, преимущественно автоматизированные информационные системы, связанные с информационными процессами, и информационные технологии, рассматриваемые с позиций системного подхода.

Это связано с тем, что базовый уровень старшей школы, ориентирован, прежде всего, на учащихся — гуманитариев. При этом, сам термин "гуманитарный" понимается как синоним широкой, "гуманитарной", культуры, а не простое противопоставление "естественнонаучному" образованию. При таком подходе важнейшая роль отводиться методологии решения нетиповых задач из различных образовательных областей. Основным моментом этой методологии является представления данных в виде информационных систем и моделей с целью последующего использования типовых программных средств.

Это позволяет:

- обеспечить преемственность курса информатики основной и старшей школы (типовые задачи – типовые программные средства в основной школе; нетиповые задачи – типовые программные средства в рамках базового уровня старшей школы);
- систематизировать знания в области информатики и информационных технологий, полученные в основной школе, и углубить их с учетом выбранного профиля обучения;
- заложить основу для дальнейшего профессионального обучения, поскольку современная информационная деятельность носит, по преимуществу, системный характер;
- сформировать необходимые знания и навыки работы с информационными моделями и технологиями, позволяющие использовать их при изучении других предметов.

Основные содержательные линии

Основные содержательные линии общеобразовательного курса базового уровня для старшей школы расширяют и углубляют следующие содержательные линии курса информатики в основной школе:

- линию информации и информационных процессов;
- линию моделирования и формализации;
- линию информационных технологий;
- линию компьютерных коммуникаций;
- линию социальной информатики.

Цели и задачи изучения курса:

Изучение информатики и информационных технологий в старшей школе на базовом уровне направлено на достижение следующих *целей*:

- освоение системы базовых знаний, отражающих вклад информатики в формирование современной научной картины мира, роль информационных процессов в обществе, биологических и технических системах;
- овладение умениями применять, анализировать, преобразовывать информационные модели реальных объектов и процессов, используя при этом информационные и коммуникационные технологии (ИКТ), в том числе при изучении других школьных дисциплин;
- развитие познавательных интересов, интеллектуальных и творческих способностей путем освоения и использования методов информатики и средств ИКТ при изучении различных учебных предметов;
- воспитание ответственного отношения к соблюдению этических и правовых норм информационной деятельности;
- приобретение опыта использования информационных технологий в индивидуальной и коллективной учебной и познавательной, в том числе проектной деятельности.

Задачи изучения курса:

- Мировоззренченская задача: раскрытие роли информации и информационных процессов в природных, социальных и технических системах; понимание назначения информационного моделирования в научном познании мира; получение представления о социальных последствиях процесса информатизации общества.
- Углубление теоретической подготовки: более глубокие знания в области представления различных видов информации, научных основ передачи, обработки, поиска, защиты информации, информационного моделирования.
- Расширение технологической подготовки: освоение новых возможностей аппаратных и программных средств ИКТ. Приближение степени владения этими средствами к профессиональному уровню.
- Приобретение опыта комплексного использования теоретических знаний (из области информатики и других предметов) и средств ИКТ в реализации прикладных проектов, связанных с учебной и практической деятельностью.

Учебно-методический комплект

Учебник:

- 1) Информатика и ИКТ. Базовый уровень: учебник для 11 классов \setminus И. Г. Семакин, Е. К. Хеннер. 4-е изд., испр. М.: БИНОМ. Лаборатория знаний, 2015
- 2) Информатика и ИКТ. Базовый уровень: практикум для 11 классов / И. Г. Семакин, Е. К. Хеннер, Т. Ю. Шеина. 3-е изд., испр. М.: БИНОМ. Лаборатория знаний, 2015.

11 класс

Технология использования и разработки информационных систем - 23 часа.

Понятие и типы информационных систем. Текст как информационный объект. Автоматизированные средства и технологии организации текста. Основные приемы преобразования текстов. Гипертекстовое представление информации. Интернет как глобальная информационная система. Web-сайт - гиперструктура данных. Геоинформационные системы. Поисковые информационные системы. Базы данных (табличные, иерархические, сетевые). Системы управления базами данных (СУБД). Формы представления данных (таблицы, формы, запросы, отчеты). Реляционные базы данных. Связывание таблиц в многотабличных базах данных.

Технология информационного моделирования – 8 часов

Моделирование зависимостей между величинами. Модели статистического прогнозирования. Моделирование корреляционных зависимостей. Модели оптимального планирования.

Основы социальной информатики – 3 часа

Информационная цивилизация. Информационные ресурсы общества. Информационная культура. Этические и правовые нормы информационной деятельности человека. Информационная безопасность.

Требования к уровню подготовки

В результате изучения курса – «Информатика 11»:

Учащиеся должны знать:

- в чем состоят цели и задачи изучения курса в 11 классах
- из каких частей состоит предметная область информатики

Информация. Представление информации

Учащиеся должны знать:

- три философские концепции информации
- понятие информации в частных науках: нейрофизиологии, генетике, кибернетике, теории информации
- что такое язык представления информации; какие бывают языки
- понятия «кодирование» и «декодирование» информации
- примеры технических систем кодирования информации: азбука Морзе, телеграфный код Бодо
- понятия «шифрование», «дешифрование».

Измерение информации.

Учащиеся должны знать:

- сущность объемного (алфавитного) подхода к измерению информации
- связь между размером алфавита и информационным весом символа (в приближении равновероятности символов)
- связь между единицами измерения информации: бит, байт, Кб, Мб, Гб
- сущность содержательного (вероятностного) подхода к измерению информации
- определение бита с позиции содержания сообщения

Учащиеся должны уметь:

- решать задачи на измерение информации, заключенной в тексте, с алфавитной т.з. (в приближении равной вероятности символов)
- решать несложные задачи на измерение информации, заключенной в сообщении, используя содержательный подход (в равновероятном приближении)
- выполнять пересчет количества информации в разные единицы

Введение в теорию систем

Учащиеся должны знать:

- основные понятия системологии: система, структура, системный эффект, подсистема
- основные свойства систем: целесообразность, целостность
- что такое «системный подход» в науке и практике
- чем отличаются естественные и искусственные системы
- какие типы связей действуют в системах
- роль информационных процессов в системах
- состав и структуру систем управления

Учащиеся должны уметь:

- приводить примеры систем (в быту, в природе, в науке и пр.)
- анализировать состав и структуру систем
- различать связи материальные и информационные.

Процессы хранения и передачи информации

Учащиеся должны знать:

- историю развития носителей информации
- современные (цифровые, компьютерные) типы носителей информации и их основные характеристики
- модель К. Шеннона передачи информации по техническим каналам связи

- основные характеристики каналов связи: скорость передачи, пропускная способность
- понятие «шум» и способы защиты от шума

Учащиеся должны уметь:

- сопоставлять различные цифровые носители по их техническим свойствам
- рассчитывать объем информации, передаваемой по каналам связи, при известной скорости передачи

Обработка информации

Учащиеся должны знать:

- основные типы задач обработки информации
- понятие исполнителя обработки информации
- понятие алгоритма обработки информации
- что такое «алгоритмические машины» в теории алгоритмов
- определение и свойства алгоритма управления алгоритмической машиной
- устройство и систему команд алгоритмической машины Поста

Учащиеся должны уметь:

- составлять алгоритмы решения несложных задач для управления машиной Поста

Поиск данных

Учашиеся должны знать:

- что такое «набор данных», «ключ поиска» и «критерий поиска»
- что такое «структура данных»; какие бывают структуры
- алгоритм последовательного поиска
- алгоритм поиска половинным делением
- что такое блочный поиск
- как осуществляется поиск в иерархической структуре данных

Учащиеся должны уметь:

- осуществлять поиск данных в структурированных списках, словарях, справочниках, энциклопелиях
- осуществлять поиск в иерархической файловой структуре компьютера

Защита информации

Учащиеся должны знать:

какая информация требует защиты

виды угроз для числовой информации

физические способы защиты информации

программные средства защиты информации

что такое криптография

что такое цифровая подпись и цифровой сертификат

Учащиеся должны уметь:

- применять меры защиты личной информации на ПК
- применять простейшие криптографические шифры (в учебном режиме)

Информационные модели и структуры данных

Учащиеся должны знать:

- определение модели
- что такое информационная модель
- этапы информационного моделирования на компьютере
- что такое граф, дерево, сеть
- структура таблицы; основные типы табличных моделей
- что такое многотабличная модель данных и каким образом в ней связываются таблицы

Учащиеся должны уметь:

- ориентироваться в граф-моделях

- строить граф-модели (деревья, сети) по вербальному описанию системы
- строить табличные модели по вербальному описанию системы

Алгоритм – модель деятельности

Учащиеся должны знать:

- понятие алгоритмической модели
- способы описания алгоритмов: блок-схемы, учебный алгоритмический язык
- что такое трассировка алгоритма

Учащиеся должны уметь:

- строить алгоритмы управления учебными исполнителями
- осуществлять трассировку алгоритма работы с величинами путем заполнения трассировочной таблины

Компьютер: аппаратное и программное обеспечение

Учащиеся должны знать:

- архитектуру персонального компьютера
- что такое контроллер внешнего устройства ПК
- назначение шины
- в чем заключается принцип открытой архитектуры ПК
- основные виды памяти ПК
- что такое системная плата, порты ввода-вывода
- назначение дополнительных устройств: сканер, средства мультимедиа, сетевое оборудование и др.
- что такое программное обеспечение ПК
- структура ПО ПК
- прикладные программы и их назначение
- системное ПО; функции операционной системы
- что такое системы программирования

Учащиеся должны уметь:

- подбирать конфигурацию ПК в зависимости от его назначения
- соединять устройства ПК
- производить основные настройки БИОС
- работать в среде операционной системы на пользовательском уровне

Дискретные модели данных в компьютере

Учащиеся должны знать:

- основные принципы представления данных в памяти компьютера
- представление целых чисел
- диапазоны представления целых чисел без знака и со знаком
- принципы представления вещественных чисел
- представление текста
- представление изображения; цветовые модели
- в чем различие растровой и векторной графики
- дискретное (цифровое) представление звука

Учащиеся должны уметь:

- -получать внутреннее представление целых чисел в памяти компьютера
- вычислять размет цветовой палитры по значению битовой глубины цвета

Многопроцессорные системы и сети

Учащиеся должны знать:

- идею распараллеливания вычислений

- что такое многопроцессорные вычислительные комплексы; какие существуют варианты их реализации
- назначение и топологии локальных сетей
- технические средства локальных сетей (каналы связи, серверы, рабочие станции)
- основные функции сетевой операционной системы
- историю возникновения и развития глобальных сетей
- что такое Интернет
- систему адресации в Интернете (IP-адреса, доменная система имен)
- способы организации связи в Интернете
- принцип пакетной передачи данных и протокол TCP/IP

Тематический план занятий (11 класс)

Тема (раздел учебника)	Всего часов
1. Информационные системы (§24)	1
2. Гипертекст (§25)	2
3. Интернет как информационная система (§§26-28)	5
4. Web-сайт (§29)	3
5. ГИС (§30)	2
6. Базы данных и СУБД (§§31-33)	5
7. Запросы к базе данных (§§34-35)	5
8. Моделирование зависимостей; статистическое моделирование	4
(§§36-37)	
9. Корреляционное моделирование (§38)	2
10. Оптимальное планирование (§39)	2
11. Социальная информатика (§§40-43)	3
Всего часов:	34

Календарно – тематическое планирование 11 класс

№ урока	Наименование раздела и темы	Примерная дата
1	Понятие информационной системы, классификация ИС.	05.09
2	База данных – основа информационной системы	12.09
3	Базы данных и СУБД	19.09
4	Проектирование многотабличной базы данных	26.09
5	Создание многотабличной базы данных	03.10
6	Создание многотабличной базы данны	10.10
7	Запросы как приложения информационной системы	17.10
8	Запросы к базе данных	24.10
9	Логические условия выбора данных	07.11
10	Логические условия выбора данных	14.11
11	Контрольная работа «Работа с базой данных»	21.11
12	Компьютерный текстовый документ как структура данных	28.11
13	Гипертекст	05.12
14	Интернет как информационная система	12.12
15	Интернет как информационная система	20.12
16	WWW – Всемирная паутина	27.12
17	Средства поиска данных в сети Интернет	
18	Средства поиска данных в сети Интернет	
19	Web-сайт – гиперструктура данных	
20	Web-сайт	
21	Web-сайт	
22	Геоинформационные системы	
23	Геоинформационные системы	
24	Моделирование зависимостей	
25	Моделирование зависимостей между величинами	
26	Модели статистического прогнозирования	
27	Прогнозирование по регрессионной модели	
28	Моделирование корреляционных зависимостей	
29	Моделирование корреляционных зависимостей	
30	Модели оптимального планирования	
31	Модели оптимального планирования	
32	Информационные ресурсы. Информационное общество	
33	Правовое регулирование в информационной сфере	
34	Проблема информационной безопасности	

Источники информации и средства обучения

Основная литература.

- 1) Информатика и ИКТ. Базовый уровень: учебник для 10-11 классов \backslash И. Г. Семакин, Е. К. Хеннер. -4-е изд., испр. М.: БИНОМ. Лаборатория знаний, 2008
- 2) Информатика и ИКТ. Базовый уровень: практикум для 10-11 классов / И. Г. Семакин, Е. К. Хеннер, Т. Ю. Шеина. -3-е изд., испр. М.: БИНОМ. Лаборатория знаний, 2008

Дополнительная литература.

- 1) Информатика. 9-11 классы: тесты (базовый уровень) / авт.-сост. Е. В. Полякова. Волгоград: Учитель, 2008
- 2) Информатика. Задачник практикум в 2 т. / Л.А. Залогова и др. Под ред. И.Г. Семакина, Е.К. Хеннера. 2-е изд. М: БИНОМ. Лаборатория знаний, 2005.
- 3) Информатика. Федеральный банк экзаменационных материалов / Авт.-сост. П. А. Якушкин, С. С. Крылов. М.: Эксмо, 2008
- 4) Информатика и ИКТ. Базовый уровень. 10-11 классы: методическое пособие / И.Г Семакин, Е. К. Хеннер. М.:БИНОМ. Лаборатория знаний, 2008
- 5) Информатика и информационные технологии. Учебник для 10-11 классов. / Н. Д. Угринович. 3-е изд. М.: БИНОМ. Лаборатория знаний, 2006 Информатика и ИКТ. Базовый уровень 10-11 классы: методическое пособие / И.Г. Семакин, Е.К. Хеннен. М,: БИНОМ. Лаборатория знаний, 2008. 102 с.: ил.

Программные средства

- 1. Операционная система Windows XP.
- 2. Антивирусная программа Антивирус Касперского 6.0
- 3. Программа-архиватор WinRar.
- 4. Клавиатурный тренажер.
- 5. Интегрированное офисное приложение Ms Office 2003, 2007.
- 6. Система оптического распознавания текста ABBYY FineReader 8.0 Sprint.
- 7. Мультимедиа проигрыватель.
- 8. Система тестирования

Критерии и нормы оценки знаний, умений и навыков обучающихся

Контроль предполагает выявление уровня освоения учебного материала при изучении, как отдельных разделов, так и всего курса информатики и информационных технологий в целом.

Текущий контроль усвоения материала осуществляется путем устного/письменного опроса. Периодически знания и умения по пройденным темам проверяются письменными контрольными или тестовых заданиями.

При тестировании все верные ответы берутся за 100%, тогда отметка выставляется в соответствии с таблицей:

Процент выполнения задания	Отметка
95% и более	отлично
80-94%%	хорошо
66-79%%	удовлетворительно
менее 66%	неудовлетворительно

При выполнении практической работы и контрольной работы:

Содержание и объем материала, подлежащего проверке в контрольной работе, определяется программой. При проверке усвоения материала выявляется полнота, прочность усвоения учащимися теории и умение применять ее на практике в знакомых и незнакомых ситуациях.

Отметка зависит также от наличия и характера погрешностей, допущенных учащимися.

- грубая ошибка полностью искажено смысловое значение понятия, определения;
- погрешность отражает неточные формулировки, свидетельствующие о нечетком представлении рассматриваемого объекта;
- *недочет* неправильное представление об объекте, не влияющего кардинально на знания определенные программой обучения;
- мелкие погрешности неточности в устной и письменной речи, не искажающие смысла ответа или решения, случайные описки и т.п.

Эталоном, относительно которого оцениваются знания учащихся, является обязательный минимум содержания информатики и информационных технологий. Требовать от учащихся определения, которые не входят в школьный курс информатики – это, значит, навлекать на себя проблемы связанные нарушением прав учащегося («Закон об образовании»).

Исходя из норм (пятибалльной системы), заложенных во всех предметных областях выставляете отметка:

- -«5» ставится при выполнении всех заданий полностью или при наличии 1-2 мелких погрешностей;
- -«4» ставится при наличии 1-2 недочетов или одной ошибки:

- -«3» ставится при выполнении 2/3 от объема предложенных заданий;
- -«2» ставится, если допущены существенные ошибки, показавшие, что учащийся не владеет обязательными умениями поданной теме в полной мере (незнание основного программного материала):

Устный опрос осуществляется на каждом уроке (эвристическая беседа, опрос). Задачей устного опроса является не столько оценивание знаний учащихся, сколько определение проблемных мест в усвоении учебного материала и фиксирование внимания учеников на сложных понятиях, явлениях, процессе.

Оценка устных ответов учащихся

Ответ оценивается отметкой «5», если ученик:

- полно раскрыл содержание материала в объеме, предусмотренном программой;
- изложил материал грамотным языком в определенной логической последовательности, точно используя терминологию информатики как учебной дисциплины;
- правильно выполнил рисунки, схемы, сопутствующие ответу;
- показал умение иллюстрировать теоретические положения конкретными примерами;
- продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при ответе умений и навыков;
- отвечал самостоятельно без наводящих вопросов учителя.

Возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

Ответ оценивается отметкой «4,. если ответ удовлетворяет в основном требованиям на отметку «5», но при этом имеет один из недостатков:

- допущены один-два недочета при освещении основного содержания ответа, исправленные по замечанию учителя:
- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию учителя.

Отметка «3» ставится в следующих случаях:

- неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала определенные настоящей программой;

Отметка «2» ставится в следующих случаях:

- не раскрыто основное содержание учебного материала;
- обнаружено незнание или неполное понимание учеником большей или наиболее важной части учебного материала;
- допущены ошибки в определении понятий, при использовании специальной терминологии, в рисунках, схемах, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.